Statistikat Vdekjes
Statistikat Vdekjes
Download : Click Here
Mortality rate, or death rate,[1] is a measure of the number of deaths (in general, or due to a specific cause) in a particular population, scaled to the size of that population, per unit of time. Mortality rate is typically expressed in units of deaths per 1,000 individuals per year; thus, a mortality rate of 9.5 (out of 1,000) in a population of 1,000 would mean 9.5 deaths per year in that entire population, or 0.95% out of the total. It is distinct from “morbidity”, which is either the prevalence or incidence of a disease,[2] and also from the incidence rate (the number of newly appearing cases of the disease per unit of time).
In the generic form, mortality rates are calculated as:
In most cases, there are few ways, if at all possible to obtain exact mortality rates, so epidemiologists use estimation to predict correct mortality rates. Mortality rates are usually difficult to predict due to language barriers, health infrastructure related issues, conflict, and other reasons. Maternal mortality has additional challenges, especially as they pertain to stillbirths, abortions, and multiple births. In some countries, during the 1920s a stillbirth was defined as ‘a birth of at least twenty weeks; gestation in which the child shows no evidence of life after complete birth. In most countries, however, a stillbirth was defined as ‘the birth of a fetus, after 28 weeks of pregnancy, in which pulmonary respiration does not occur.[9]
Census data and vital statistics[edit]
Ideally, all mortality estimation would be done using vital statistics and census data. Census data will give detailed information about the population at risk of death. The vital statistics provide information about live births and deaths in the population. [10] Often, either census data and vital statistics data is not available. This is especially true in developing countries, countries that are in conflict, areas where natural disasters have caused mass displacement, and other areas where there is a humanitarian crisis [10]
Household surveys[edit]
Household surveys or interviews are another way in which mortality rates are often assessed. There are several methods to estimate mortality in different segments of the population. One such example is the sisterhood method. This technique involves researchers estimating maternal mortality by contacting women in populations of interest and asking whether or not they have a sister, if the sister is of child-rearing age (usually 15) and conducting an interview or written questions about possible deaths among sisters. The sisterhood method, however, does not work in cases where sisters may have died before the sister being interviewed was born.[11]
Orphanhood surveys estimate mortality by questioning children are asked about the mortality of their parents. It has often been criticized as an adult mortality rate that is very biased for several reasons. The adoption effect is one such instance in which orphans often do not realize that they are adopted. Additionally, interviewers may not realize that an adoptive or foster parent is not the child’s biological parent. There is also the issue of parents being reported on by multiple children while some adults have no children, thus are not counted in mortality estimates. [10]
Widowhood surveys estimate adult mortality by responding to questions about the deceased husband or wife. One limitation of the widowhood survey surrounds the issues of divorce, where people may be more likely to report that they are widowed in places where there is the great social stigma around being a divorcee. Another limitation is that multiple marriages introduce biased estimates, so individuals are often asked about first marriage. Biases will be significant if the association of death between spouses, such as those in countries with large AIDS epidemics. [10]
Sampling[edit]
Sampling refers to the selection of a subset of the population of interest to efficiently gain information about the entire population. Samples should be representative of the population of interest. Cluster sampling is an approach to non-probability sampling; this is an approach in which each member of the population is assigned to a group (cluster), and then clusters are randomly selected, and all members of selected clusters are included in the sample. Often combined with stratification techniques (in which case it is called multistage sampling), cluster sampling is the approach most often used by epidemiologists. In areas of forced migration, there is more significant sampling error. Thus cluster sampling is not the ideal choice.