Filtrimi Emrit/Nick

Filtrimi Emrit/Nick

Filtrimi Emrit/Nick

 

 

 

 

 

Download : Click Here

Animals, typically fish, kept in fish tanks produce waste from excrement and respiration. Another source of waste is uneaten food or plants and fish which have died. These waste products collect in the tanks and contaminate the water. As the degree of contamination rises, the risk to the health of the aquaria increases and removal of the contamination becomes critical. Filtration is a common method used for maintenance of healthy aquaria.
Proper management of the nitrogen cycle is a vital element of a successful aquarium. Excretia and other decomposing organic matter produce ammonia which is highly toxic to fish. Bacterial processes oxidize this ammonia into the slightly less toxic nitrites, and these are in turn oxidized to form the much less toxic nitrates. In the natural environment these nitrates are subsequently taken up by plants as fertilizer and this does indeed happen to some extent in an aquarium planted with real plants.

An aquarium is, however, an imperfect microcosm of the natural world. Aquariums are usually much more densely stocked with fish than the natural environment. This increases the amount of ammonia produced in the relatively small volume of the aquarium. The bacteria responsible for breaking down the ammonia colonize the surface of any objects inside the aquarium. In most cases, a biological filter is nothing more than a chemically inert porous sponge, which provides a greatly enlarged surface area on which these bacteria can develop. These bacterial colonies take several weeks to form, during which time the aquarium is vulnerable to a condition commonly known as “new tank syndrome” if stocked with fish too quickly. Some systems incorporate bacteria capable of converting nitrates into nitrogen gas.[5]

Accumulation of toxic ammonia from decomposing wastes is the largest cause of fish mortality in new, poorly maintained, or overloaded aquariums.[6] In the artificial environment of the aquarium, the nitrogen cycle effectively ends with the production of nitrates. In order that the nitrate level does not build up to a harmful level regular partial water changes are required to remove the nitrates and introduce new, uncontaminated water.[7]

Mechanical and chemical filtration
The process of mechanical filtration removes particulate material from the water column. This particulate matter may include uneaten food, feces or plant or algal debris. Mechanical filtration is typically achieved by passing water through materials which act as a sieve, physically trapping the particulate matter.[1] Removal of solid waste can be as simple as physical hand netting of debris, and/or involve highly complex equipment. All removal of solid wastes involve filtering water through some form of mesh in a process known as mechanical filtration. The solid wastes are first collected, and then must be physically removed from the aquarium system. Mechanical filtration is ultimately ineffective if the solid wastes are not removed from the filter, and are allowed to decay and dissolve in the water.

Dissolved wastes are more difficult to remove from the water. Several techniques, collectively known as chemical filtration, are used for the removal of dissolved wastes, the most popular being the use of activated carbon and foam fractionation. To a certain extent, healthy plants extract dissolved chemical wastes from water when they grow, so plants can serve a role in the containment of dissolved wastes.

A final and less common situation requiring filtration involves the desire to sterilize water-borne pathogens. This sterilization is accomplished by passing aquarium water through filtration devices which expose the water to high intensity ultraviolet light and/or exposing the water to dissolved ozone gas.

Numerous materials are suitable as aquarium filtration media. These include synthetic wools, known in the aquarium hobby as filter wool, made of polyethylene terephthalate or nylon. Synthetic sponges or foams, various ceramic and sintered glass and silicon products along with igneous gravels are also used as mechanical filter materials. Materials with a greater surface area provide both mechanical and biological filtration. Some filter materials, such as plastic “bioballs”, are best used for biological filtration.

With the notable exception of diatom filters, aquarium filters are rarely purely mechanical in action, as bacteria will colonise most filter materials effecting some degree of biological filtration.[1] Activated carbon and zeolites are also frequently added to aquarium filters. These highly porous materials act as adsorbates binding various chemicals to their large external surfaces[2] and also as sites of bacterial colonisation.
Power or HOB (hang on back) filters, typically powered by an impeller, remove water from the aquarium, which is then pushed (or pulled) through a series of different filter media and returned to the aquarium. These are the most common filter.[1] They are usually more effecti

CATEGORIES
TAGS
Share This
NEWER POST
OLDER POST

COMMENTS

Wordpress (0)
Disqus ( )
//lurgaimt.net/5/2710160