Shkop Ndriques

Shkop Ndriques

Shkop Ndriques




Download : Click Here


A glow stick is a self-contained, short-term light-source. It consists of a translucent plastic tube containing isolated substances that, when combined, make light through chemiluminescence, so it does not require an external energy source. The light cannot be turned off and can only be used once. Glow sticks are often used for recreation, but may also be relied upon for light during military, police, fire, or EMS operations.
Bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate, trademarked “Cyalume”, was invented in 1969 by Michael M. Rauhut[1] and Laszlo J. Bollyky of American Cyanamid, based on work by Edwin A. Chandross of Bell Labs.[2][3] Other early work on chemiluminescence was carried out at the same time, by researchers under Herbert Richter at China Lake Naval Weapons Center.[4][5]

Several US patents for “glow stick” type devices were received by various inventors. Bernard Dubrow and Eugene Daniel Guth patented a Packaged Chemiluminescent Material in June 1965 (Patent 3,774,022). In October 1973, Clarence W. Gilliam, David Iba Sr., and Thomas N. Hall were registered as inventors of the Chemical Lighting Device (Patent 3,764,796). In June 1974 a patent for a Chemiluminescent Device was issued with Herbert P. Richter and Ruth E. Tedrick listed as the inventors (Patent 3,819,925).

In January 1976, a patent was issued for the Chemiluminescent Signal Device, with Vincent J. Esposito, Steven M. Little, and John H. Lyons listed as the inventors (Patent 3,933,118). This patent recommended a single glass ampoule that is suspended in a second substance, that when broken and mixed together, provide the chemiluminescent light. The design also included a stand for the signal device so it could be thrown from a moving vehicle and remain standing in an upright position on the road. The idea was this would replace traditional emergency roadside flares and would be superior, since it was not a fire hazard, would be easier and safer to deploy, and would not be made ineffective if struck by passing vehicles. This design, with its single glass ampoule inside a plastic tube filled with a second substance that when bent breaks the glass and then is shaken to mix the substances, most closely resembles the typical glow stick sold today.

In December 1977 a patent was issued for a Chemical Light Device with Richard Taylor Van Zandt as the inventor (Patent 4,064,428). This design alteration features a steel ball that shatters the glass ampoule when the glow stick is exposed to a predetermined level of shock; an example of its use being that an arrow can be flown dark but illuminate its landing location upon sudden deceleration.
Glow sticks are waterproof, do not use batteries, generate negligible heat, are inexpensive, and are reasonably disposable. They can tolerate high pressures, such as those found under water. They are used as light sources and light markers by military forces, campers, and recreational divers.
Glowsticking is the use of glow sticks in dancing.[7] This is one of their most widely known uses in popular culture, as they are frequently used for entertainment at parties (in particular raves), concerts, and dance clubs. They are used by marching band conductors for evening performances; glow sticks are also used in festivals and celebrations around the world. Glow sticks also serve multiple functions as toys, readily visible night-time warnings to motorists, and luminous markings that enable parents to keep track of their children. Yet another use is for balloon-carried light effects. Glow sticks are also used to create special effects in low light photography and film.[8]

The Guinness Book of Records says the world’s largest glow stick was cracked at 9 ft 10 in (3 m) tall. It was created using Plexiglass by KNIXS GmbH (all Germany) in Darmstadt Weiterstadt, Germany, on 29 June 2009
Glow sticks emit light when two chemicals are mixed. The sticks consist of a tiny, brittle container within a flexible outside container. Each container holds a different solution. When the outer container is flexed, the inner container breaks, allowing the solutions to combine, causing the necessary chemical reaction. After breaking, the tube is shaken to thoroughly mix the two components.

The glow stick contains two chemicals and a suitable dye (sensitizer, or fluorophor). This creates an exothermic reaction. The chemicals inside the plastic tube are a mixture of the dye and diphenyl oxalate. The chemical in the glass vial is hydrogen peroxide. By mixing the peroxide with the phenyl oxalate ester, a chemical reaction takes place, yielding two moles of phenol and one mole of peroxyacid ester (1,2-dioxetanedione).[10] The peroxyacid decomposes spontaneously to carbon dioxide, releasing energy that excites the dye, which then relaxes by releasing a photon. The wavelength of the photon—the color of the emitted light—depends on the structure of the dye. The reaction releases energy mostly as light, with very little heat.[11]

Share This


Wordpress (0)
Disqus ( )